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Motivation

You have some weather/climate model that you want to improve
and some observations that might help you in some way. You might
want to. . .

Parameter estimation
Find what model parameter values are “best”, by some quantitative
metric (which is likely not perfect in some way or another)

Sensitivity analysis
Figure out which model parameters are the “most important”, i.e.
have the greatest effect on some quantities of interest

Uncertainty quantification
Get some measure for how bad your model is, or how little you
know about its parameter values
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Parameter Estimation

Overarching question: what is the most probable set of parameter
values, given the information (theoretical, empirical, expert guess,
etc.) available? Combining information this way can be. . .

Express probabilistically
What is the probability of some parameter value x given some new
information (data) y, or. . .P (x|y)

Bayes’ theorem

P (x|y,M) =
P (x|M) · P (y|x,M)

P (y|M)
(1)

P (x|M) – prior PDF of control parameters
P (y|x,M) – likelihood of observations given parameter values
All probabilities are conditional on the choice of model M !
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Solving Bayes: Complete Enumeration 1

One can simply span the full parameter space and map out the
probability of all possibilities.
e.g. Lets say we have 5 data points and want to fit a Gaussian,
what is the probability of a particular choice of µ,σ?

-0.5 0 0.5 1 1.5 2 2.5

Figure from MacKay (2005)



Complete Enumeration 2

Set bounds and discretize space in µ, σ dimensions

Figure from MacKay (2005)



Complete Enumeration 3

Calculate probability of parameters given data (shown via thickness
of lines, with very small probability not shown).

Figure from MacKay (2005)



Complete Enumeration 4

Advantages:
Works for any distribution (no Gaussian assumption)
Easy to code
Efficiency depends only on resolution and number of parameter
dimensions

Disadvantages
No clear way to efficiently/adequately span parameter space
Curse of dimensionality (cost increases with dimension as
(Nx)n)



Kalman Filter/Smoother

Assuming all probabilities are Gaussian and your model is linear (i.e.
can be expressed as a matrix), Bayes’ theorem is trivial to solve:
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Kalman Filter/Smoother

Assuming all probabilities are Gaussian and your model is linear (i.e.
can be expressed as a matrix), Bayes’ theorem is trivial to solve:

xa = xf + PfHT (HPfHT + R)−1
[
y −Hxf

]
,

Where xa is the posterior mean, H is the model matrix, Pf is the
forecast covariance and R is the observational error covariance.
For nonlinear models, ensemble approximations of terms in the
Kalman filter are used, yielding the ensemble Kalman filter (EnKF)
For strongly nonlinear problems (most parameter estimation
problems), these approximations are really bad.



Markov chain Monte-Carlo (MCMC)

We intelligently sample the parameter space:
Use a modified random walk (a Markov chain) to sample the
parameter space

Random walk can be Gaussian or uniform (or anything else)
Each new sample depends only on the previous sample
(Markovian property).
Each new sample is accepted or rejected depending on
probabilities of prior/proposal:

The density of samples matches P (x|y,M)
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Markov chain example - the Metropolis sampler
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Markov chain example - the Metropolis sampler
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MCMC in action



Practical issues with MCMC

No efficient way to
parallelize

Assessing convergence can
be tricky
Requires zillions of samples
(model integrations!)

Relies on accurate prior and
observational uncertainty
Assumes that the parameters
of interest are the main
source of uncertainty

The Bottom Line:
MCMC methods are great for tricky (strongly nonlinear,
multimodal, ill-posed) parameter estimation problems where model
integration is relatively cheap. Even then, they require care and
expert guidance (model/observation).
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Simulated Annealing 1

For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.

Perform MCMC walk, similarly to
Metropolis sampling
Scale the transition probability by a
“temperature” which decreases with
sample size.
This allows for bold transitions
when the sampler is “hot” and more
conservative transitions when the
sampler is “cold”
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Simulated Annealing 1

For optimization problems, we can modify a MCMC sampler to
more efficiently find high-probability regions of the parameter space.

Perform MCMC walk, similarly to
Metropolis sampling
Scale the transition probability by a
“temperature” which decreases with
sample size.
This allows for bold transitions
when the sampler is “hot” and more
conservative transitions when the
sampler is “cold”

For example. . .

PSA = P
1
T

Ti =
200

log(i+ 1)



Simulated Annealing 2
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Gibbs Sampling

(a)
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P (x1 | x(t)
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What if you can sample from
the conditional distribution?
Take turns sampling from
conditionals of each
dimension
Acceptance ratio = 1
(always!)
Freely available software
(BUGS) - Bayesian inference
Using Gibbs Sampling

Figure from MacKay [2005]



Other Monte Carlo topics

Hamiltonian (hybrid) MCMC and No U-Turn Sampler
Affine-invariant MCMC (The MCMC Hammer)
Importance sampling
Slice sampler
Perfect sampler
Nested (& multimodal nested sampling)
MC methods for model comparison (estimation of ‘evidence’)
Particle filter
Ensemble Kalman Filter



Surrogate techniques

What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

Emulate the response of
some model to perturbation
of parameters by nonlinear
regression
Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model
Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc.
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Surrogate techniques

What if the model is still too expensive, and you can only afford to
run it 1000, 500, or 100 times?

Emulate the response of
some model to perturbation
of parameters by nonlinear
regression
Perform parameter
estimation or sensitivity
analysis or UQ on the
(cheap!) surrogate model
rather than the full model
Choices: Gaussian Process
Models, Polynomial Chaos
Expansion, etc. Sim. Annealing: 500×10 samples



Estimating Ice Microphysics Parameters

Oue et al JAMC 2016

the earlier period. Below the height of the embedded
liquid-cloud layers (1.4–1.5 km; Figs. 8a,b), the X-SAPR
ZH structure is mostly horizontally uniform, increasing
with decreasing altitude at lower altitudes. The ZDR

attains maximum values of up to 7 dB near the echo top
(Fig. 9b), similar to the earlier period, but decreases
toward the surface. This altitude variation is captured in
the composite ZDR profiles (Fig. 9c). The mean ZDR at
and just below the lowest liquid-cloud layer (1.2–1.4 km,
denoted by arrow 3 in Fig. 8a) is ;6 dB for elevation
angles less than 108 (greater than 1708) but decreases to
;5 dB at 0.9–1.1 km, ;3 dB at 0.5–0.7 km, and ;2.5 dB
at 0.1–0.3 km. The coexisting decrease in ZDR and

increase inZH going toward the surface below the liquid-
cloud layers is consistent with the process of aggregation
of ice crystals (Hall et al. 1984; Ryzhkov and Zrnić 1998;
Kennedy and Rutledge 2011; Andrić et al. 2013; Bechini
et al. 2013; Schrom et al. 2015). Figure 7 reveals that this
change in the ZH and ZDR profiles occurred around
1700 UTC, when the reflectivity above the liquid-cloud
layers (1.4–1.5km) increased (also see Fig. 8c; 1830–
1850 UTC). Although it is difficult to discern the exact
cause of this ZH increase, it appears that a higher-level
cloud advected over the radar site. The general pattern of
ZH and ZDR profiles persisted until 1900 UTC, shortly
after the small feature at 1.7 km disappeared.
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FIG. 7. Time-vs-height cross sections of the X-SAPR (a) ZH and (b) ZDR on 2 May 2013. Each profile represents
the mean values of all points with elevation angles of 148–158 (1658–1668) in 50-m height increments from three
HRHI scans (azimuth angles of 78, 528, and 978) every approximately 5min. The horizontal gray lines and black dots
respectively represent liquid-cloud top estimated from the KAZR Doppler spectrum width and cloud base ob-
served by a ceilometer.
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Estimating Ice Microphysics Parameters

mean profiles of ZH, ZDR, KDP, and rHV through areas
where the ZH and ZDR profiles are consistent with the
time-evolving structures revealed in Figs. 7 and 14. These
meanprofiles (Fig. 17) come fromblocks in a singleHRHI
for each case. Averages were calculated in 100-m altitude
increments from values with elevation angles ,208
or.1608. Because ZH in the HRHI of the aggregate case
is mostly horizontally uniform, the block placement is not
critical (Figs. 9a,b), but the HRHIs of the dendrite and
riming cases exhibit some inhomogeneities that must
be considered. For the pristine dendrite case, we se-
lected two regions with lower ZH and higher ZDR

(Figs. 6a,b), and for the rimed dendrite case, we followed
one of the larger-scale structures from the cloud top to
the surface (Figs. 13a,b). Because the X-SAPR is less
sensitive than the KAZR, it frequently failed to detect
the seeder clouds. Therefore, we also constructed mean
profiles of the KAZR reflectivity and Doppler velocity
for the three cases (Figs. 18a,b). Finally, we also present
the HSRL linear depolarization and backscatter pro-
files (Figs. 18c,d). The selection of KAZR and HSRL
averaging periods for each case followed the arguments
presented for the HRHI blocks. Profiles for the pristine
dendrite case were calculated for a period of weak
reflectivity (Fig. 5c), for the rimed dendrite case
following a precipitation streak (Fig. 12c) and for the
aggregate case around the time of the photographs
(Fig. 8a). Note that we named each profile according to
the type of ice particles observed at the surface.

The X-SAPR and KAZR mean reflectivity profiles
have the same general characteristics (Figs. 17a, 18a), but
the KAZR indicate cloud-top reflectivities of 230dBZ
about 200–300m higher than the X-SAPR in all the cases,
because the X-SAPR sensitivity (sensitivity ;238dB at
1km) is lower than the KAZR (sensitivity ;245dB at
1km). The mean Doppler velocities near the ground
support our differentiation between the cases as pristine
dendrites, rimed dendrites, and aggregates of dendrites.
The mean Doppler velocities for each case correspond to
particle fall speeds of ‘‘unrimed dendrites’’ and ‘‘densely
rimed dendrites’’ [underlying crystal structure visible
(from Locatelli and Hobbs 1974)] and ‘‘early snowflakes’’
(from Kajikawa 1989), respectively.
We use the mean KAZR reflectivities just above the

tops of the liquid-cloud layers to quantify the seeder-
cloud precipitation because of the KAZR’s greater sen-
sitivity. Figure 18a reveals systematic differences in the
seeder-cloud layers between the three cases, with the
pristine dendrite case having the lowest reflectivities
(;225dBZ), the aggregate case higher (;212dBZ),
and the riming case the highest (;29dBZ). Reflectivities
in the liquid-cloud layers exceed the X-SAPR ZH mini-
mum values, allowing us to use theX-SAPRvalues in and
below these layers. The mean ZDR values in the upper
liquid-cloud layers are similar for the three cases (.6dB;
Fig. 17b). Figures 5 and 12 show ZDR values above the
upper-level liquid-cloud layers exceeding 8dB for all
three cases. These ZDR values and the seeder-cloud

FIG. 17. Vertical profiles of averaged (a) ZH, (b) ZDR, (c) KDP, and (d) rHV from the X-SAPR HRHIs, during which the pristine
dendrites (blue line), aggregates (red line), and rimed dendrites (green line) were observed at the ground. The averaging areas are
presented in Figs. 6, 9, and 13. Averages were calculated in 100-m altitude increments from all values with elevation angles,208 or.1608.
The total number of samples in each profile exceeds 1900. Error bars represent standard deviations. Gray shading represents layers
between ceilometer-measured cloud base and topmost liquid-cloud top.
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Estimating Ice Microphysics Parameters



More Ice Microphysics: Aggregation

In situ (2DC & HVPS)

Observations: MC3E Profiling radars, in situ

NOAA S-band profiler: 
• Pros: unattenuated, Rayleigh scattering 
• Cons: large beamwidth, which results in 

dynamically broadened Doppler spectra 
!
!
Ka-band ARM Zenith Radar (KAZR) 
• Pros: Narrow beamwidth, high sensitivity 
• Cons: Attenuated through rain, non-

Rayleigh scattering for larger 
hydrometeors 
!

In situ probes (2D-C, HVPS3) 
• Pros: Single particle 2D information 

(size/area), PSD 
• Cons: Uncertainties with mass 

estimation, no CPI on 5/20/2011

20 May 2011, SGP, Trailing Stratiform MCS
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More Ice Microphysics: Aggregation



More Ice Microphysics: Aggregation

Sticking efficiency and ice
property/PSD

Fwd-simulated Z, MDV profiles



A Probabilistic Microphsyics Scheme

Bayesian
Observationally-
constrained
Statistical-physical
Scheme (BOSS)



A Probabilistic Microphysics Scheme

3-moment performs
better than
2-moment BOSS
(higher likelihood)

Predicted
uncertainty is a
good match to error
in almost all cases.

Some issue with
(numerical)
oscillation at
top-of-rain shaft



Cloud Property Retrieval using Radar



Cloud Property Retrieval using Radar



Sensitivity analysis

PGMLT
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Joint 2D marginal,
Efficiency parameter and process activity:

PGMLT − Melting of graupel to rain
(convective regime)



The end

Thanks for listening!



What is the likelihood?

P (x|y) =
P (x) · P (y|x)

P (y)
(2)

Assuming Gaussian error in our observations, the likelihood is:

P (y|x) = e−Φxy , (3)

Φxy =
1

2
(f(x)− y)TC−1(f(x)− y) (4)

f(x) is result of propagating the control parameters x through the
forward model f .
y is the (true) observational vector.
C is the observation error covariance matrix.
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Practical issues with MCMC: Proposal issues 1

Poorly tuned proposal distribution
can cause problems. Also, bad
choice of start position can be
problematic.

A: Good proposal variance
B: Proposal variance small,
started far from large PDF
values
C: same as B, started within
region of large PDF values
D: Same as B, adaptive
proposal variance
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Fig. 2. Scatter plots of (a) 20,000 samples from an MCMC chain with a well tuned proposal,
(b), (c), and (d) 1,000 samples from three test MCMC chains. In (b), the proposal variance
is too small, and the chain is started far from the posterior mode. In (c), the proposal
variance is too small, but the chain is started near the posterior mode. In (d), the chain is
started at a point far from the posterior mode, and with proposal variance that is initially
too small. However, the proposal variance is allowed to vary according to the characteristics
of the sample during the first 1000 iterations.
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Practical issues with MCMC: Proposal issues 2

Time series of chain can show problematic autocorrelation due to
poorly chosen proposal and/or non-covergent sample.
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Fig. 1. Timeseries plots of parameter values in MCMC chains with (a) well tuned proposal,
(b) proposal variance that is too large, (c) proposal variance that is too small, and (d)
proposal variance that is too small and a chain that is started far from the mode of the
target distribution. The dashed horizontal line corresponds to the true parameter maximum
likelihood value (= 0.5), and the marginal distribution of each parameter is plotted in gray
along the ordinate axis of each plot on the right hand side. For reference, each marginal
distribution is overlaid with a black line depicting the distribution obtained by sampling
with the well-tuned proposal (a).
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Practical issues with MCMC: Proposal issues 3

How does one construct a good
proposal?

Prior knowledge
“Burn-in” phase where
proposal is actively tuned
Adaptive Metropolis
(proposal variance constantly
tuned)
Delayed Rejection (2nd
proposal after 1st)

How does one avoid bad start
position?

Prior knowledge
Run many chains with
random start positions
Run simulated annealing
“pre-sampler”
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Practical issues with MCMC: Asessing
convergence 1

When do we stop our chain? How do we tell if we’ve converged to
the target PDF?

If the target distribution is
known, compare
Assess convergence of
running statistical moments
Kolmogorov-Smirnov test on
chain sub-samples
R-statistic – Gelman et al.
[1996]
Caveat: beware of
‘pseudo-convergence’ !

110 Philippe and Robert

leading to

!1
T =

T −1∑

t=1

(
x [t+1] − x [t]) f

(
x [t]) (11)

as an “estimator of 1”. In this special case, !1
T thus works as

a control variate in the sense that it must converge to 1 for the
chain to converge. The important feature of (11) is, however, that
it provides us with an “on-line” evaluation of the probability
of the region yet unexplored by the chain and is thus a clear
convergence diagnostic for stationarity issues.

Example 4. Consider the case of a bivariate normal mixture,

(X, Y ) ∼ pN2(µ, ") + (1 − p)N2(ν, "′), (12)

where µ = (µ1, µ2), ν = (ν1, ν2) ∈ R2 and the covariance matri-
ces are

" =
(

a c

c b

)
, "′ =

(
a′ c′

c′ b′

)
.

In this case, the conditional distributions are also normal mix-
tures,

X | y ∼ ωyN
(

µ1 + (y − µ2)c
b

,
det "

b

)

Fig. 5. (top) Histogram of the Markov chain after 4000, 6000 and 10,000 iterations (middle) Path of the Markov chain for the first coordi-
nate x (bottom) Control curves for the bivariate mixture model, for the parameters µ = (0, 0), ν = (15, 15), p = 0.5, " = " ′ = ( 3 1

1 3
)

(Continued on next page).

+ (1 − ωy)N
(

ν1 + (y − ν2)c′

b′ ,
det "′

b′

)

Y | x ∼ ωxN
(

µ2 + (x − µ1)c
a

,
det "

a

)

+ (1 − ωx )N
(

ν2 + (y − ν1)c′

a′ ,
det "′

a′

)
,

where

ωx = p−1/2 exp(−(x − µ1)2/(2a))

pa−1/2 exp(−(x − µ1)2/(2a)) + pa′−1/2 exp(−(y − ν1)2/(2a′))

ωy = pb−1/2 exp(−(y − µ2)2/(2b))

pb−1/2 exp(−(y − µ2)2/(2b)) + pb′−1/2 exp(−(y − ν2)2/(2b′))
.

They thus provide a straightforward Gibbs sampler, while the
marginal distributions of X and Y are again normal mixtures,

X ∼ pN (µ1, a) + (1 − p)N (ν1, a′)

Y ∼ pN (µ2, b) + (1 − p)N (ν2, b′).

It is easy to see that, when both components of the normal
mixture (12) are far apart, the Gibbs sampler may take a large
number of iterations to jump from one component to the other.
This feature is thus ideal to study the properties of the conver-
gence diagnostic (11). As shown by Fig. 5, for the numerical val-
ues µ = (0, 0), ν = (15, 15), p = 0.5, " = "′ = ( 3 1

1 3 ), the chain



Practical issues with MCMC: Asessing
convergence 2

R-Statistic – Gelman et al. [1996]
General idea:

Run many chains
Compute variance within
each chain (W)
Compute mean of each chain
Compare mean of
within-chain variances with
variance of all chain means
(B)

ˆvar+(x|y) =
n− 1

n
W +

1

n
B

(5)

R̂ =

√
ˆvar+(x|y)

W
(6)



Summary

Monte Carlo methods can solve tough inference problems
using random numbers

Much cheaper than complete enumeration, especially as
dimensions increase
Robust, make no assumptions of model linearity or PDF
Gaussianity
Require many model integrations
Often do not parallelize well
For more info see:

Tarantola [2005]
MacKay [2005]
Robert and Casella
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